
Advanced Debugging with JPF-Inspector
Pavel Jančı́k

Charles University, Czech Republic
Jan Kofroň

Charles University, Czech Republic
Pavel Parı́zek

University of Waterloo, Canada

Abstract—Debugging in the context of JPF relates both to
analyzed Java programs and the JPF itself. In the first case, the
main challenge is debugging concurrent programs. In the case
of JPF itself, the main challenge is to find what is happening
inside. We present the JPF-Inspector — a tool for monitoring
and control of JPF during traversal of Java program’s state
space. It makes debugging easier by addressing some limitations
of existing tools. We describe main features of JPF-Inspector and
show on a small example how it can be used for debugging of
concurrent programs. Finally, we discuss our vision regarding
JPF-Inspector and future plans.

Keywords-debugging, concurrency, state space traversal, back-
tracking, Java Pathfinder

I. INTRODUCTION

Debugging programs is very hard. Tools like JPF provide
a trace for each detected error, but then it is still hard to
find the root cause (incorrect statements) of the error from
the trace and fix the program code. In the context of JPF, we
must specifically consider (1) debugging the Java program in
which JPF found some error, and (2) also debugging the JPF
itself. The latter is very important as there are many custom
extensions and optimizations for JPF.

The main challenge in debugging JPF and its extensions
on some Java program is to find what is happening inside
JPF at any given time during traversal of the program’s
state space, and whether JPF is processing the given Java
program correctly. The relevant information for this purpose
include: what bytecode instructions were executed (in a given
transition), what non-deterministic choices were generated,
whether state matching works correctly, and what is the current
program state. In some cases, it might be useful to know also
the current state of internal data structures of JPF.

Current approaches to debugging Java programs analyzed
by JPF include manual inspection of the program code and
the error trace provided by JPF, reading huge log files, adding
code for printing debug messages, using debuggers (e.g., GDB
or the debugger available in a given IDE), and writing special
purpose JPF listeners for tracking relevant operations and ex-
ploring program state. For debugging the JPF implementation,
which involves fixing the bug indicated by a failing unit test,
the prevailing approaches include manual inspection of the
code, printing debug messages, and reading log files. All these
tasks are manual to a large degree and very time consuming.

We present the JPF-Inspector — a tool for monitoring and
control of JPF during traversal of the program state space. It
supports common features of debuggers like breakpoints and
single-step execution, and it also provides means for inspecting

and changing the state of the analyzed Java program at any
point during the state space traversal. Developers can use
Inspector to interactively find the necessary information about
program state and JPF execution, instead of adding debug
messages into the JPF codebase and manually reading huge log
files. In general, the JPF-Inspector makes debugging of Java
programs in the context of verification with JPF much easier,
and it also greatly simplifies the process of developing custom
JPF extensions, properties, and optimizations — especially
when considering more complex Java programs as test inputs.

The rest of the paper is organized as follows. We describe
all features of JPF-Inspector in Section II. Then we illustrate
how to use Inspector for easier debugging of concurrent Java
programs and general inspection of their behavior on a small
example (Section III), and we also discuss how Inspector could
be used for debugging JPF and its extensions (Section IV).
Finally, we provide a list of planned features and our long-
term vision regarding Inspector in Section V.

II. JPF-INSPECTOR

The JPF-Inspector is a standard JPF extension that allows
the user to interactively control the process of state space
traversal and explore program state. More specifically, Inspec-
tor currently supports the following: breakpoints at specific
events, program state inspection and limited modification,
single step traversal of program state space both in forward
and backtrack direction, selection of a particular option at
a non-deterministic choice point, and replay of a previously
recorded command sequence. In our opinion, this is the most
important set of features useful for debugging. The tool is
available from the Mercurial repository through URL that
is mentioned at the web page http://babelfish.arc.nasa.gov/
trac/jpf/wiki/projects/jpf-inspector. Now we describe the main
features of JPF-Inspector in more detail.

Breakpoints can be defined at these events: property viola-
tion, execution of a specific line of code, execution of a specific
instruction, transition boundary, access to some field of some
heap object, invocation of a specific method, and scheduling
of a particular thread. However, the set of events is not fixed
— it can be extended by the user.

Single step execution is currently supported at these levels
of granularity (in both directions): instruction, transition, and
source code line (with and without stopping at nested and
enclosing method invocations). Moreover, it is possible to
run Inspector in a mode where it prints all options (enabled
transitions) at each non-deterministic choice and the user must
select one of them. When the user performs some backtrack



steps from the state s, the tool remembers taken choices as
defaults such that it is then possible to go forward into the
original state s (in which the manual inspection started).

Program state inspection is supported through commands
that print: status and call stack of each thread, field values of
each heap object, and values of local variables in any stack
frame of any thread. Navigation over fields of the reference
type (i.e., over the tree of heap objects) is possible through a
custom expression language. Modification of the program state
is currently restricted to changing values of local variables and
object fields. For example, it is not possible to add new frames
to call stack of some thread, to remove existing frames, or to
create new heap objects.

Inspector allows the user to save into a text file all com-
mands executed in the current session, and replay them later
in another session. It is not possible to save only a particular
subsequence of commands through any Inspector command.

A complete description of all supported commands — their
syntax and output — is provided in the user guide [8].

The user interface has the form of a JPF Shell panel
that contains an embedded simple textual console for writing
commands and printing output.

From the implementation perspective, Inspector consists of
(1) a server module that provides all the functionality and (2)
a client module that manages the user interface and reads user
commands. The server module provides an API for calling
Inspector from other program analysis frameworks.

III. DEBUGGING CONCURRENT PROGRAMS

The main goal of the debugging process is to find the root
cause of an error detected during program execution or by
some program verification tool, and fix the bug afterwards.
Many useful tools that facilitate debugging have been de-
veloped in the past — for example, GDB [6], JPDA [7],
Replay Debugging in VMware tool [9], and CHESS [3].
Nevertheless, each of these tools has certain limitations and
debugging is still very difficult and tedious work. GDB does
not support program state modification in combination with
backward steps and does not allow executing the program
under a different thread schedule, so the developer cannot
easily check whether the error depends on the values of some
variables or on the thread schedule. The CHESS tool does not
support replay of an error trace in combination with program
state modification.

In general, a big challenge is to support efficient debugging
of concurrent programs. Tools like CHESS allow reproducing
concurrency errors despite non-determinism in thread schedul-
ing, but they do not point to root causes of detected errors.

JPF-Inspector addresses some limitations of existing debug-
gers and provides mechanisms for more efficient debugging of
concurrent programs in the context of automated verification
with JPF. Specifically, the developer can set breakpoints,
explore program state, modify the program state, do backward
steps, and control thread scheduling at the same time. A typical
scenario not possible by existing tools is the following: create
some breakpoints, run the program until it stops at one of

the breakpoints, inspect program state, make several backward
steps, optionally modify the program state, and execute the
program in the forward direction in a stepwise manner (1)
along the same path or using a different schedule (a different
execution path) and (2) possibly with different values of
program variables (input data). This way, the developer can
use Inspector to find what conditions trigger a given error.

Single step execution allows the user to focus on a specific
part of the program state space after a breakpoint was hit, and
to inspect the effects of the next few instructions (transitions)
on the program state and error occurrence. The ability to con-
trol thread scheduling interactively (and explore a particular
thread interleaving) is especially helpful when debugging a
concurrency error, since the developer can check whether the
given error occurs under a different schedule and thus narrow
down the set of possible root causes (buggy program code
locations). Of course, it is also possible to use Inspector just for
interactive observation of the program behavior under specific
conditions, when no specific errors are known.

A very big advantage is that JPF behaves as a real Java vir-
tual machine, and therefore it precisely simulates all bytecode
instructions in a given program. The only exception are calls
of native methods.

In the rest of this section, we show the usage of JPF-
Inspector for debugging on a small multi-threaded program.

Figure 1 shows a program that contains an atomicity error
and a unit test that fails non-deterministically at the assertion
(line 25) because of the error. The program represents a cache
for text files with asynchronous loading. An instance of the
CacheManager class holds the content of cached files and an
instance of the FileLoader class is responsible for loading of
files using a background thread. The Test class represents the
failing unit test.

When the developer runs JPF on the program, it finds
the error (violated assertion). The error trace provided by
JPF indicates the thread schedule that results in the assertion
violation but in general does not help much in determining the
root cause of the error.

One option is to use JPF-Inspector to analyze the error
trace and find the root cause. Figure 2 shows the respec-
tive user session in JPF-Inspector — a sequence of user
commands and their output. At first, the developer has to
re-execute the failing test in JPF-Inspector such that the
execution stops immediately after JPF detects the error. This
can be achieved by the commands create breakpoint
property_violated and run.

When JPF finds the error and JPF-Inspector stops its execu-
tion at the breakpoint, a user can inspect the current program
state as well as the error trace. The print command prints
the values of all local variables in the top stack frame of
the current thread — this includes the loaded content of the
input file (line 11 in Figure 2). The malformed non-ASCII
characters ("�") in the content variable point to some problem
with the charset conversion in the FileLoader class. Either the
charset field contains an incorrect value or there is a bug in the
conversion routine. A new assertion can be dynamically added



1 class CacheManager {
2 private FileLoader loader = new FileLoader();
3 private Map<File, String> cache;
4
5 // asynchronously load file to cache
6 void loadFile(String fileName, String charset) {
7 synchronized (this) {
8 if (!fileInCache(fileName)) {
9 loader.setFileName(fileName);

10 loader.setCharset(charset);
11 }
12 }
13 }
14
15 boolean fileInCache(String) { ... }
16
17 String getCachedFile(String) { ... }
18 }
19
20 public class Test {
21 public static void main (...) {
22 CacheManager cm = new CacheManager();
23 cm.loadFile(”Test1.ini”, ”UTF−8”);
24 String content = cm.getCachedFile(”Test1.ini”);
25 assert content.equals(”#áéı́óúý”);
26 }
27 }

28 class FileLoader extends Thread {
29 private File file = null;
30 private String charset = ”US−ASCII”;
31
32 FileLoader () {
33 this.start(); // start loading thread
34 }
35
36 void setFileName(String fileName) {
37 synchronized (this) {
38 file = new File(fileName);
39 notify(); // wake up loader thread
40 }
41 }
42
43 synchronized void setCharset (String) { ... }
44
45 synchronized void run () {
46 while (true) {
47 wait(); // wait for file to process
48 // load file to buffer
49 // convert charset
50 Charset cs = Charset.forName(charset);
51 // store to CacheManager
52 }
53 }
54 }

Fig. 1. Program with an atomicity error

(using the command assert pos=TestClass.java:51
this.charset == "UTF-8") to check the first hypothe-
sis. Note that we did not have to recompile the program after
the new assertion was added. Everything is fully dynamic and
controlled from the JPF-Inspector session — new assertions
are checked in a JPF listener. Then, a sequence of three back-
ward steps (the command back_step_over 3) is done
to restore the program state as it was before the call of the
loadFile method (at line 23 in Figure 1), and program execution
is restarted in the forward direction by the run command
to check whether the newly added assertion holds. JPF finds
that the assertion is violated, i.e. we know that charset !=
"UTF-8", and the program execution is stopped at line 51.

The print this.charset command shows that the
charset field contains its initial value (US-ASCII), although the
expected value is UTF-8. The program state can be modified so
that the field has the expected value (using the command set
this.charset "UTF-8"), and the program is restarted
(by the run command) to check whether the wrong charset
is the only reason why the test failed. None of the assertions
is now violated and the test successfully finishes.

By the procedure described above, we found that the charset
field has not been set correctly. The next step is to inspect the
error trace together with program code to find the root cause of
the error (the reason why this error occurred). First, we must
use the run command to execute the program again so that
is reaches the point where the dynamically added assertion
(charset == "UTF-8") is violated.

Then the enable print scheduling cg command

puts Inspector into a mode where it prints all runnable
threads that can be scheduled at each transition boundary.
The back_step_transition command is used to move
the program into a previous state where a different thread
can be scheduled or some other values can be assigned to
any variable. In our case, a single backward step over a
transition is enough to reach the loadFile method that contains
the bug. Output of the thread_pc command (at lines 48-51
in Figure 2) shows that the main program thread is stopped
just before the call of the setCharset method (line 10 in the
program code) and that the file-loading thread is waiting in the
run method (line 47). The JPF-Inspector session log shows at
line 40 that the file-loading thread runs in the transition that
we backtracked over (the ”>” character marks the thread to
be scheduled), and thus we know that the setCharset method
has not been called and, as a result, the charset conversion
has failed. The problem — a bug in the program — has been
successfully identified.

Inspector can be also used to check if another condition
triggers the error. The main thread can be scheduled using the
cg select 0 command, so that the setCharset method will
be called in the next transition outgoing from the current state
s. Afterwards, the run command must be used to start JPF
again. It then explores all thread interleavings from the state
s, and in particular checks whether the assertion is violated in
any thread interleaving. Now the test passes successfully (if the
main thread was scheduled in the transition outgoing from the
state s), and the user can see that the error does not occur if the
file-loading thread is not scheduled right after the call of the



1 The Inspector console: Test
2
3 cmd>create breakpoint property violated
4 New breakpoint succesfully created with ID=1
5 cmd>run
6 ...
7 cmd>print
8 Test.main(String[]) − Test.java:25 − assert content.equals(”#áéı́óúý”);
9 0 : args (java.lang.String[]) =[Ljava.lang.String;@a7

10 1 : cm (CacheManager) =CacheManager@140
11 2 : content (java.lang.String) =java.lang.String@1000447 − #������
12
13 cmd>assert pos=Test.java:51 this.charset == ”UTF-8”
14 New assertion succesfully created with ID=2
15
16 cmd>back step over 3
17 INFO: SuT is stopped
18 SuT (Thread=0) executes the Test.java:23 − aload 1 source: cm.loadFile(”Test1.ini”, ”UTF-8”);
19
20 INFO: Assertion (ID=2) violated
21 SuT enters the Test.java:51
22
23 cmd>print this.charset
24 charset (java.lang.String) =java.lang.String@156 − US-ASCII
25 0 : value (char[]) =[C@157
26 ...
27 cmd>set this.charset ”UTF-8”
28 Set charset (java.lang.String) =java.lang.String@159 − UTF-8
29 cmd>run
30 # Execution terminated and no property violation is found now
31 ...
32 # Reexecute SuT to reach state where the dynamic assertion is violated again
33 cmd>run
34 INFO: Assertion (ID=2) violated
35 SuT enters the Test.java:51
36 cmd>enable print scheduling cg
37 cmd>back step transition
38 ChoiceGeneratorAdvance − scheduling CG − monitorEnter (1c904f75) :
39 0−ThreadInfo [name=main,index=0,state=RUNNING]
40 >1−ThreadInfo [name=FileLoader,index=1,state=UNBLOCKED]
41 Execution is halted. Specify which choice to use (0−1)
42 Hint: Use ’cg select CHOICE INDEX’ command
43
44 INFO: SuT is stopped
45 SuT (Thread=1) executes the java/lang/Object.java:−1 − executenative Object.wait V
46
47 cmd>thread pc
48 0 : Test.java:10: loader.setCharset(charset);
49 CacheManager:loadFile:10:invokevirtual loader.setCharset(Ljava/lang/String;)V
50 1 : java/lang/Object.java:−1:(java/lang/Object.java:−1)
51 java.lang.Object:wait:0:executenative JPF java lang Object.wait V
52
53 cmd>cg select 0
54 ChoiceGeneratorAdvance used values − scheduling CG − monitorEnter (1c904f75) : >0−Thread ...
55 ...

Fig. 2. User session in JPF-Inspector

setFileName method. This is an example of how comparison
of failing and passing execution (thread interleaving) can help
in identifying the error root cause, when the error depends on a
specific interleaving. A possible fix of the atomicity error is to
create a new synchronized block around the calls of methods
setFileName and setCharset, where the fileLoader variable is

used as the monitor.

This example debugging scenario illustrates how features
of JPF-Inspector are useful for analysis of an error trace and
finding the actual bug in the code. The most important aspects
are: (1) the possibility to combine backward steps together
with program state modification and explicit control of thread



scheduling, and (2) the ability to run JPF with breakpoints at
specific code locations or transition boundaries.

IV. DEBUGGING JPF EXTENSIONS

Existing features of JPF-Inspector can be used also for
debugging JPF and its extensions. Supported commands allow
the developer to see, for example, what choices are generated
at each transition boundary and how state matching works (i.e.,
whether some program state was identified by JPF as already
visited). The developer can find how a given optimization
changes (1) the shape of the program state space, (2) individual
transitions (e.g., their length), and (3) the content of individual
program states, and whether it works correctly.

Nevertheless, many other features and new commands are
needed for really efficient debugging of JPF, like support for
introspection. Their implementation is a part of our future
work, as described in the next section.

V. FUTURE WORK

The current version of JPF Inspector is the first step on the
way to allow (1) easier debugging of Java programs that are
analyzed by JPF and (2) easier debugging of JPF extensions.
Much work still has to be done to fully achieve that goal.

Our top priority is to finish implementation of commands
and features that we already started working on. This in-
cludes dynamic assertions, which we already introduced in
Section III, and improvements of existing commands. We plan
to support dynamic adding of new assertions over the program
state and code locations, and also dynamic enabling/disabling
of existing assertions. Regarding existing commands, we will
implement additional functionality and new variants — back-
ward step to a previous breakpoint hit, single step execution
with repetition count, breakpoints upon certain expressions
over variable values, backward steps to a transition boundary
that is connected with a specific event (e.g., access to a shared
object), and many others.

In the long term, we plan to do the following:
• implement additional commands, especially those neces-

sary for debugging of JPF extensions,
• automate many tasks that JPF-Inspector can be already

used for in an interactive way,
• improve the user interface by adding new controls and

views, and by better integration with existing IDEs,
• provide basic support for the Symbolic JPF [1], and
• compare with other debugging tools and techniques on

real-world concurrent programs.
Our general goal is to improve the JPF-Inspector so that it is
a mature and useful debugging tool.

The principal feature necessary for debugging JPF exten-
sions is some form of JPF introspection. This means displaying
the content of internal data structures, and the raw state of
choice generators, listeners, and properties.

Some automation is certainly needed, because currently the
users must do everything by hand through the interactive
console. The replay feature provides only limited automation.
We would especially like to partially automate the search for

root causes of errors detected by JPF, and maybe also to
support code completion for writing Inspector commands. To
enhance the usefulness of JPF-Inspector in finding root causes
of detected errors, we could implement algorithms that were
proposed recently and maybe improve them in the context
of JPF (using precise knowledge of program state). Delta
debugging can be used to find a thread schedule that triggers a
given error [2]. Another option is to use trace comparison and
slicing on the passing and failing thread schedules to help find-
ing the statements forming the given bug [4]. We could also
use some ideas about finding suspicious thread interleavings
from [5] and modify the Inspector GUI so that it recommends
thread choices that form the suspicious interleavings. The
overall goal is to automatize the identification of root causes
for concurrency errors as much as possible under reasonable
assumptions (constraints). Lot of information already available
in JPF (e.g., program state and current trace) can be exploited
for this purpose.

The new GUI elements may include these: program state
explorer (tree-like), breakpoint manager, and buttons for fre-
quently used commands. Besides improving the GUI, we will
also implement a purely command-line (textual) user interface
that could be used from various scripts.

Support for the Symbolic JPF would include these features:
(1) commands for printing attributes of various program state
elements, and (2) the possibility to define symbolic values
for variables on-the-fly or change symbolic values back to
concrete values.

JPF-Inspector could be used also to find why state explosion
occurs for a given Java program. A feature required for this
usage is state comparison (”diff”). Inspector would be able to
compute differences between any two states on any paths —
e.g., the names of variables that have different values in the
given states. With this information, the user would be able to
determine what causes the increase in the number of reachable
states (e.g., a counter with ever increasing value).

ACKNOWLEDGEMENTS.

This work was supported by the Google Summer of Code
program in the years 2010 and 2011.

REFERENCES

[1] S. Anand, C.S. Pasareanu, and W. Visser. JPF-SE: A Symbolic Execution
Extension to Java PathFinder, In TACAS 2007, LNCS, vol. 4424.

[2] J.-D. Choi and A. Zeller. Isolating Failure-Inducing Thread Schedules, In
ISSTA 2002, ACM.

[3] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu.
Finding and Reproducing Heisenbugs in Concurrent Programs, In OSDI
2008, USENIX.

[4] D. Weeratunge, X. Zhang, W.N. Sumner, and S. Jagannathan. Analyzing
Concurrency Bugs Using Dual Slicing, In ISSTA 2010, ACM.

[5] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T.
Reps. ConSeq: Detecting Concurrency Bugs through Sequential Errors, In
ASPLOS 2011, ACM.

[6] GDB: The GNU Debugger, http://www.gnu.org/software/gdb/
[7] Java Platform Debugger Architecture, http://java.sun.com/javase/

technologies/core/toolsapis/jpda/
[8] JPF Inspector user guide, 2011, http://babelfish.arc.nasa.gov/trac/jpf/wiki/

projects/jpf-inspector/userguide/
[9] Replay debugging in VMware products, http://www.replaydebugging.com


